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2 > The Outline of This Talk*

= Defining the challenge of computing incompressible
shear flows with compressible codes.

m Renewed focus from ILES studies of turbulence
m A shear test problem and its incompressible solution

m Problems: real and imagined
m Real - an ill-conditioned system, violations of the
2nd law or lack of convergence in Mach number
m Imagined - incompressibility as an approximation
and its limitations
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F.F. Grinstein, L.G. Margolm W.J. Rider (Eds.)

A synthesis of ILES research is
found in a book with contributions

Available soon! ﬁl from key ILES researchers.
Summer 2007

Recently there has been a renewed
interest in solving incompressible
flows with compressible method
often in the context of turbulence.
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<~ We have had excellent results using
compressible methods for turbulence.

m Success in modeling the JHU wind tunnel
experiment has been achieved.
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m The experimental data was published in JFM (480,
pp- 129-160, 2003) and can be found on a JHU

website.
m A difficult decaying turbulence experiment, with lots
of data for validation at Re,=720. Sanda
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- ) Great results were computed considing this a low-
Mach number flow (M=0.1, not incompressible)

m The kinetic energy decays were spot on with both
PLM and PPM methods (not minmod PLM!).

m The method passes an important validation hurtle
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" The PDF of the velocity increments are

= <& much more impressive (on a coarse grid).
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All the ILES methods produce 55,105 | 5 w/dynamic-mixed

much more intermitent results T —
than the CLES. The xPPM orf gf(n)’h;féé'.;
and MPDATA results are the T
closest to the data.
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Evolution of the Taylor-Green Vortex
- ) MILES: Grinstein, Fureby, Drikakis, Youngs, 2006, JoT in press.
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Power law decay of the mean Kkinetic energy
e ~ t1-2 behavior just after t*~9, generally accepted as characteristic of decaying turbulence

e ~ t~2 behavior, asymptotically, reflecting that eddies larger that box side length cannot exist
* LR is significantly less dissipative, ....
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) Why do Youngs’ results stand out?

m Is there something intrinsically “better” with
Youngs’ TURMOIL code?

m Is it the Lagrange-Remap, 3rd order advection?

m Youngs has hypothesized that one reason is the
form used for artificial viscosity in the Lagrangian
step

m The artificial viscosity is proportional to the
multidimensional divergence of velocity squared

0 =C(Ax) max(0,-V-u)

m This form of viscosity is less favorable for shocks

m Edge viscosity would not share this property, but
would perform better in shocks S
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<~ Youngs has suggested abstracting this to a
impler problem, like a 2-D shear layer.

= David Youngs of AWE developed a simple problem to
examine the differences in code performance on shear.

m The problem is an ideal, but discontinuous shear with a
potential flow perturbation in a low frequency mode

m The problem exhibits different structures with varying
Mach number

0A 0A
u V=-—

B Jy 0x
V,
where A | = ?Ocos (ky) exp(-k‘x‘)

z

Y-velocity
V,=05

and V, = amplitude of velocity perturbation
=0.1 AV

= | have decided to use a somewhat different problem. ___
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= 2 Youngs studied a simple shear problem
and found serious problems.

m His code showed little dependence on Mach or CFL
M=02 At=0.005  M=02 A=0.0005 ' 45  A=0.0005

number,
16x16 grids, - o —
Under refinement = ~= R =
the morphology 7 S N V) Ny ) PN
of the shear layer (AT (A ([~
Changes s 4 "»i'.'j:_-_._ . = »-:7,:_;:;_ _ == > ___
function of Mach o - -
number

= But a Godunov Method (VH-1 L-R PPM) showed great
dependence on both!

M=0.2  At=0.005 M=0.2 At=0.0005 M=0.02  At=0.0005
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= P An doubly periodic shear layer as a useful
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The calculation is
converging
toward the
iIncompressible
analytical result
of kinetic energy
conservation with
a rate of 1.94
(2nd order).

=
2

Kinetic energy decay converges at 2nd
order under mesh refinement.

Incompressible
(KL P —— \ —
| 4 32x32
0.43 9
. § 64x64
] 17_8X128
0.42 ]
0.41- .
0 — e  ——— )
0 1 2
time
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= ¥ 2nd Runge-Kutta plus 4th order centered
edge values with monotone limiting*

K.E.

= We see 2nd order convergence in KE with mesh ref.
m We see divergence as the Mach number decreases.
m Converging to a finite dissipation result.

H.O. 2nd R-K + 6th
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= ¥ We examine compressible results with a
le of differen nov meth :

PLLM PPM

! E iwj+l/2
Wi f=W;-1/28; /

: : Wi-12 Wi

O=—1/2 0=1/2 e::_1/2 9::1/2

Defined by the slope and Defined by the edge values

_cell-average, produces a and cell-average, produces a

inherently “broken space’ potentially continuous

approximation. approximation with centered

edge values.
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< Performance for simple Godunov
methods - PLM* w/high order or minmod.

Mesh Refinement — Minmod

Mesh Refinement — PLLM 4th order slope
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This is a convergent compressible
sequence, converging at rate of 0.972,
but it is more diffuse at 128x128 than
the incompressible 32x32 calculation!
Converges to the “same?” finite
dissipation result as R-K.

*A dimensionally split integrator

Note that all the compressible
curves turn up at late time and
The 128x128 is more dissipative
than the 64x64
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< The PPM* method performs a bit better
than PLM, but its not sufficient.

Mesh Refinement — PPM 4th order edges

When | refine 0435
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<~ Using different edge value differencing,
shows some interesting sensitivity.

All calculations

on a 32x32 grid,

and the
structure near
the end each
calculation is
related to the
presence of &

nonlinear ez
acoustic waves
(shocklets).

PPM M=0.025

0.435 5

0.43
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32x]
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<~ Yet another advantage of PPM:

Asymptotically preserving solutions

= If one looks at solutions where the is an asymptotic
structure, the truncation error can inhibit convergence,
unless the small scale structure is resolved. PLM does
this!
m PPM: Continuous edge values as At —0
= Example - Reaction system with a diffusive limit

du+dv=00v+-Lou=-Lv=u®-5u® =0
&2 &2

= Example 2 - Acoustics in the zero(low)-Mach limit

du+dv=0,0v+-Lou=0;1=+1
82 £
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4 )Vorticity shows that determining the “best”
sgﬁﬂbn_iSJmcﬁL

N
-~ L ] 9 -
. ‘l ' . ‘ . ' 'PLM minmod
|ncompress,b|e PPM M—G 025 PPM M=0.2 omp b

M=0.2
\— ’” /

§5§§§ 128x128

M minmod
=0. 025

-




V

4 Jaterial motion results show that the “better”




V I
- ) From these results we can draw some
preliminary conclusions.

= PPM generally is less diffusive (of K.E.) than PLM,
and centered edge-based approximations are
(almost) physically and diffusively acceptable.

= The minmod PLM method is convergent, but is very
diffusive, but appears better for material advection.

m Results are relatively insensitive to Mach number.

m Less diffusive PLM methods behave unphysically
late in time (t>1).

m The R-K (MOL) integrator with centered edge values
is mesh convergent, but too diffusive as the Mach
number descreases.

m Upwind edges behave unphysically.
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= ). The methods misbehave because
div(u)=0 looks like a shock.

® Div(u)=0 produces semi- t
permanent shock/rarefaction
pairs cell-by-cell

m Is shock dissipation
appropriate?
m Schemes can produce meta-

Looks, like a shock in x

and a rarefaction in|y

stable states that produce anti- Minmod
diffusion without a shock then Less
diffusive

“healing” the unphysical state.

m Small CFL numbers make the
problem worse!

slopes
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Examining the evolution of entropy
yields some disturbing results.

Any quality assessment that counts the “swirls” would
Favor such violations since it will make the flow swirlier

15.002 e
_ 2nd law of miamed
thermo sign TdS >0 | sime
2 : convention -
S 15.001+ PPM4
£ .
5 -
15F=r=mrmms T S e
14.9996 e
0.0001171 1 2
time
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= P Violations of the 2nd law of thermodynamics
are more serious than other problems.

= The violations of the 2nd law of thermodynamics is
more critical than too much dissipation.

m This implies that results are unphysical rather than
simply inaccurate.

m The reason for this violation seem to be directly
linked to the spatial differencing.

= The problem with violations of an “entropy
condition” slowly gets worse as the Mach number
decreases,

m Points to a problem with the conditioning of the
problem.

Sandia
March 2007 National
Laboratories



~

Why are there violation of the 2nd law?

m The problem is clearly associated with the “entropy”
wave (but not shear!) carrying the density & energy
changes.

m Effectively the low Mach number flow is poorly
conditioned,
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m The condition number is the ratio of largest to smallest
eigenvalues, A = (u —c u u u+ c)

m The condition number can become infinite if u
becomes small (as the Mach number decreases).
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= P If incompressible flows are ill-conditioned
what can be done?

m Past efforts have focused on preconditioning the
system, thus basically removing some of the
compressible character of the solutions in order to
produce incompressible solutions (not practical).

m Another common approach is when problems are
found dissipate them!

m The minmod limiter does this naturally, but its
overkill, it dissipates the entire flow.

m The trick is to detect the problems and deal with
them locally where the problem occurs.

m Careful examination found that all the problems
occur in the entropy modes in compressible flow,
Ap Ap
p pC2 March 2007 ﬁg?igﬁal
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Is incompressibility entirely physical?

m No, its not. Certainly not inviscid incompressibility.

m For starters incompressibility has infinite signal
speeds, fluids do not, finite speed of propagation is
necessary.

m There is no second law, and vanishing viscosity is
not generally an applied principle..

m ...except for the derivation of Margolin, Rider &
Grinstein JOT 2006. The finite scale equations
have solutions based on vanishing viscosity.

m Incompressibility does not have known mechanisms
for producing singularities, but they are necessary
to explain the fundamental behavior of turbulence.

m Compressible flows produce singularities, i.e.
shocks under almost any conditions.
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<~ The production of dissipation without
viscosity is essential for many processes.

m For shock waves in the limit of weak shocks

2 2
TAS——E )\Au 0;6:_7/\/ alz
6¢c 2p AV
m For three dimensi rbulence
<aK> AK G (Au) /
> At = —
ot At 6 / C

m For Burgers’ equation, comes from the jump

conditions VRN
1 <8K> _ M
12\ ot A
m The weak shock limit and the zero Mach number limit

are one and the same! What is the difference?
Au/() % O Sandia
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- > The difference between the low Mach
number limit and weak shock is subtle.

Compressible flows can shock at any Mach number!

m The difference comes down to the implied
smoothness of the flow.

= A weak shock limit has an implied discontinuity, a
shock (differs from adiabatic at 3rd order),

® ...while the incompressible flow is a well-
conditioned nice flow.

= What really happens? Under what conditions do
physical (inviscid) flows fail to shock?

Hlti)

m Do incompressible flows deplete the nonlinear
mechanism for shock formation?
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= P Evidence shows that incompressible flows
steepen and produce shock-like structures.

= By shock-like this means that the flow structures
achieve a thickness that is linearly dependent on
resolution (3 zones wide regardless of mesh density)

m This occurs quite clearly in the shear layer problem
(and many others!)

6 cells 12 ceﬁs

)

3 cells

4

-
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Summary

= Low-Mach number shear flows are a distinct
challenge for compressible solvers

m Various methods perform well with issues for low-
Mach shear (more diffusive limiters have advantages)

m Dimensionally split solvers are not too diffusive,
but can show 2nd law of thermo violations

m MOL+centered differencing is convergent in mesh
refinement, but not Mach number

m These errors can be viewed as arising from the ill-
conditioning of the system of equations.

m Incompressibility as an appropriate model should be
examined critically.
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